That’s an amazing drone project. I am also working on a similar project, which I am planning to complete in a week’s time. Do you have any special ideas that you can share? I found some useful ideas and FPV quadcopter designs here: http://mydronelab.com/best-pick/fpv-quadcopters.html
This is my latest 15 inch ultra-long range setup with 50 minutes flight time: Propellers: 15x5.5" Tarot with custom hub Motors: T-Motor MN3110 470 kV Frame: 240g custom carbon structure Lipo: 2x 4S 4000 mAh SLS 20C (parallel) Camera: Micro Runcam micro sparrow Firmware: INAV FC: Holybro Kakute F7 ESC: Tekko32 F3 GPS: BN-180 Compass: QMC5883L Receiver: FRSky R9 slim+ Hovering flight time is 50 minutes at 8.5 Amps and 40% throttle. Current goes up to 12 A when flying 50-60 km/h. Flight characteristics are really good when tuned properly (you'll nee a HUGE D-term). Here is the CAD file of the frame. INAV 2.4.0 PID settings: set mc_p_pitch = 85 set mc_i_pitch = 60 set mc_d_pitch = 150 set mc_p_roll = 85 set mc_i_roll = 60 set mc_d_roll = 150 set mc_p_yaw = 200 set mc_i_yaw = 70 set mc_p_level = 40 set mc_i_level = 10 set max_angle_inclination_rll = 500 set max_angle_inclination_pit = 500 set dterm_...
Why future racing copters really should look different. by Dr. William Thielicke aka Willa aka Shrediquette ABSTRACT In this article I try to demonstrate why FPV racing multirotors need to look different. Some small modifications to the frame would (in theory…!) result in 70 % higher top speed! All that needs to be done is to align the arms parallel to the propeller flow, and to tilt the main body of the copter by about 40 degrees. I am presenting a very simple and robust racing copter design that incorporates these ideas. Furthermore, I am calculating the aerodynamic drag of different copter concepts using basic equations. The aim of this article is to make you realize the importance of aerodynamics and to stimulate people to design more innovative racing frames. INTRODUCTION Until recently, multirotors were mainly used as a “hovering device” and the top speed of these copters did hardly matter. Now, multirotor racing has become popular and all competitors are seeking ...
Summary: FPV racing multirotors with side force generators (SFGs), will drift less during turns, making them potentially faster on race tracks (watch the video comparison here ) . But the SFGs need the be carefully placed and dimensioned, so that aerodynamic centre and centre of mass are at the same position. Otherwise it will not work. Introduction Recently, I was thinking about how to improve the handling of racing copters. I noticed since quite a long time, that different copters behave quite differently in fast turns: Some drift quite a lot (especially when they carry a larger battery or an action cam), others drift less. I was always preferring copters that drift as little as possible. That is also why I am trying to reduce the weight of my copters as much as feasible. The amount of drift depends on the weight of the copter and the lift and drag of the fuselage for sideways air streams (side-slip). The larger the lift and drag, the more side force the fusel...
About a month ago, I was presenting an idea to make drones faster on race tracks: The so called ‘side force generators’ (SFGs) enable racing drones to drift less during turns, making them potentially faster. The placement of the ‘wings’ is very critical and mentioned in more detail in my earlier post on SFGs . Some people tested the SFGs and confirmed the enhanced flight characteristics. Other people didn’t try and didn’t believe that SFGs could help. I must agree that the concept of the SFGs is not so easy to understand. That is why I will explain it in more detail here. Let’s start with something that everyone knows (figure 1). When you are going through a fast turn with your car, then your car needs to provide two forces to stay on the track (grey line): The ‘thrust’ (green) of your car needs to equal its aerodynamic and friction drag (yellow). When the car turns, then there needs to be a constant force towards the centre of the turn, called ‘centripetal force’ (red). This...
Recently, I discovered some small counter-rotating propellers that I didn't know before. I ordered some and did some tests. The red 4x4.5" props look really good, nice thin airfoils and a good precision. During the tests, they made the least amount of noise, and are currently my preferred ones. The performance of the 4x2.5" props is even better, but they have a pretty terrible sound and seem to be less balanced. Both propellers outperform the AirAce propellers, but this is not really a surprise because the AirAce have a smaller diameter and more blades. What is also interesting is the weight of the propellers. A propeller with a lower weight potentially has a lower moment of inertia which is beneficial for the control loops: AirAce: 2.1 g 4x2.5": 1.5 g 4x4.5" : 1.3 g So this is an advantage for the 4x4.5" propellers, especially because the weight of this propeller is more concentrated to the center, which should further lower the momentof inertia. ...
Thanks
ReplyDeleteThat’s an amazing drone project. I am also working on a similar project, which I am planning to complete in a week’s time. Do you have any special ideas that you can share? I found some useful ideas and FPV quadcopter designs here: http://mydronelab.com/best-pick/fpv-quadcopters.html
ReplyDelete